Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Mol Biol Rep ; 51(1): 298, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38341808

RESUMO

BACKGROUND: Brachiopods are a phylum of marine invertebrates with over 10,000 fossil species. Today, there are fewer than 500 extant species assigned to the class Articulata or Inarticulata and for which knowledge of evolutionary genetics and genomics is still poor. Until now, complete mitogenome sequences of two inarticulate species and four articulate species were available. METHODS AND RESULTS: The complete mitogenome of the inarticulate brachiopod species Lingula reevii (20,778 bp) was obtained by using next generation sequencing. It contains 12 protein-coding genes (the annotation of atp8 is unsure), two ribosomal RNA genes, 26 transfer RNA genes, and one supernumerary ORF that is also conserved in the inarticulate species Lingula anatina. It is hypothesized that this ORF could represent a Lingula-specific mtORFan gene (without obvious homology to other genes). Comparative mitogenomics indicate the mitochondrial gene order of L. reevii is unique among brachiopods, and that compared to articulate species, inarticulate species exhibit massive mitogenome rearrangements, deviant ATP8 protein sequences and supernumerary ORFs, possibly representing species- or lineage-specific mtORFan genes. CONCLUSION: The results of this study enrich genetics knowledge of extant brachiopods, which may eventually help to test hypotheses about their decline.


Assuntos
Genoma Mitocondrial , Invertebrados , Animais , Invertebrados/genética , Evolução Biológica , Genômica , Genes Mitocondriais , Sequência de Aminoácidos , Genoma Mitocondrial/genética , Filogenia
2.
PLoS One ; 19(2): e0292205, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38335194

RESUMO

Our understanding of basic cellular processes has mostly been provided by mammalian cell culture, and by some non-mammalian vertebrate and few invertebrate cell culture models. Developing reliable culture conditions for non-model organisms is essential to allow investigation of more unusual cellular processes. Here, we investigate how cells isolated from different tissues of the marine mussel Mytilus edulis thrive and survive in vitro in the hope of establishing a suitable laboratory model for the investigation of cellular mechanisms specific to these bivalve mollusks. We found that cells dissociated from mantle tissue attached to the culture vessels and proliferated well in vitro, whereas cells isolated from gills, although remaining viable, did not maintain divisions over three to four weeks in culture. We used antibodies against the germ-line marker DEAD-box helicase 4 (DDX4), also known as VASA, and the epithelial cell marker cytokeratin to distinguish different cell types in culture. DDX4-positive cells were predominant in 25-day-old cultures from male mantles. Cells from other tissues remained in low numbers and did not seem to change in composition over time. Overall, the culture conditions described here allow an efficient selection of male germ cells that could be used to study specific cellular mechanisms in vitro.


Assuntos
Mytilus edulis , Mytilus , Animais , Masculino , Técnicas de Cultura de Células , Células Germinativas/metabolismo , Proliferação de Células , Mamíferos
3.
Artigo em Inglês | MEDLINE | ID: mdl-38346534

RESUMO

In a recent mechanistic study, octopamine was shown to promote proton transport over the branchial epithelium in green crabs, Carcinus maenas. Here, we follow up on this finding by investigating the involvement of octopamine in an environmental and physiological context that challenges acid-base homeostasis, the response to short-term high pCO2 exposure (400 Pa) in a brackish water environment. We show that hyperregulating green crabs experienced a respiratory acidosis as early as 6 h of exposure to hypercapnia, with a rise in hemolymph pCO2 accompanied by a simultaneous drop of hemolymph pH. The slightly delayed increase in hemolymph HCO3- observed after 24 h helped to restore hemolymph pH to initial values by 48 h. Circulating levels of the biogenic amine octopamine were significantly higher in short-term high pCO2 exposed crabs compared to control crabs after 48 h. Whole animal metabolic rates, intracellular levels of octopamine and cAMP, as well as branchial mitochondrial enzyme activities for complex I + III and citrate synthase were unchanged in posterior gill #7 after 48 h of hypercapnia. However, application of octopamine in gill respirometry experiments suppressed branchial metabolic rate in posterior gills of short-term high pCO2 exposed animals. Furthermore, branchial enzyme activity of cytochrome C oxidase decreased in high pCO2 exposed crabs after 48 h. Our results indicate that hyperregulating green crabs are capable of quickly counteracting a hypercapnia-induced respiratory acidosis. The role of octopamine in the acclimation of green crabs to short-term hypercapnia seems to entail the alteration of branchial metabolic pathways, possibly targeting mitochondrial cytochrome C in the gill. Our findings help advancing our current limited understanding of endocrine components in hypercapnia acclimation. SUMMARY STATEMENT: Acid-base compensation upon short-term high pCO2 exposure in hyperregulating green crabs started after 6 h and was accomplished by 48 h with the involvement of the biogenic amine octopamine, accumulation of hemolymph HCO3-, and regulation of mitochondrial complex IV (cytochrome C oxidase).


Assuntos
Acidose Respiratória , Braquiúros , Decápodes , Animais , Hipercapnia/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Octopamina/metabolismo , Acidose Respiratória/metabolismo , Braquiúros/fisiologia , Brânquias/metabolismo
4.
Mol Biol Evol ; 40(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37935058

RESUMO

Genetic elements encoded in nuclear DNA determine the sex of an individual in many animals. In certain bivalve lineages that possess doubly uniparental inheritance (DUI), mitochondrial DNA (mtDNA) has been hypothesized to contribute to sex determination. In these cases, females transmit a female mtDNA to all offspring, while male mtDNA (M mtDNA) is transmitted only from fathers to sons. Because M mtDNA is inherited in the same way as Y chromosomes, it has been hypothesized that mtDNA may be responsible for sex determination. However, the role of mitochondrial and nuclear genes in sex determination has yet to be validated in DUI bivalves. In this study, we used DNA, RNA, and mitochondrial short noncoding RNA (sncRNA) sequencing to explore the role of mitochondrial and nuclear elements in the sexual development pathway of the freshwater mussel Potamilus streckersoni (Bivalvia: Unionida). We found that the M mtDNA sheds a sncRNA partially within a male-specific mitochondrial gene that targets a pathway hypothesized to be involved in female development and mitophagy. RNA-seq confirmed the gene target was significantly upregulated in females, supporting a direct role of mitochondrial sncRNAs in gene silencing. These findings support the hypothesis that M mtDNA inhibits female development. Genome-wide patterns of genetic differentiation and heterozygosity did not support a nuclear sex-determining region, although we cannot reject that nuclear factors are involved with sex determination. Our results provide further evidence that mitochondrial loci contribute to diverse, nonrespiratory functions and additional insights into an unorthodox sex-determining system.


Assuntos
Bivalves , Pequeno RNA não Traduzido , Feminino , Animais , Bivalves/genética , DNA Mitocondrial/genética , Mitocôndrias/genética , Genes Mitocondriais
5.
Ecol Evol ; 13(8): e10320, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37636868

RESUMO

Taking advantage of the unique system of doubly uniparental inheritance (DUI) of mitochondria, we developed a reliable molecular method to sex individuals of the marine bivalve Macoma balthica rubra. In species with DUI (~100 known bivalves), both sexes transmit their mitochondria: males bear both a male- and female-type mitogenome, while females bear only the female type. Male and female mitotypes are sufficiently divergent to reliably PCR-amplify them specifically. Loop-mediated isothermal amplification (LAMP) is a precise, economical and portable alternative to PCR for molecular sexing and we demonstrate its application in this context. We used 154 individuals sampled along the Atlantic coast of France and sexed microscopically by gonad examination to test for the congruence among gamete type, PCR sexing and LAMP sexing. We show an exact match among the sexing results from these three methods using the male and female mt-cox1 genes. DUI can be disrupted in inter-specific hybrids, causing unexpected distribution of mitogenomes, such as homoplasmic males or heteroplasmic females. To our knowledge, DUI disruption at the intra-specific scale has never been tested. We applied our sexing protocol to control for unexpected heteroplasmy caused by hybridization between divergent genetic lineages and found no evidence of disruption in the mode of mitochondrial inheritance in M. balthica rubra. We propose LAMP as a useful tool to accelerate eco-evolutionary studies of DUI. It offers the opportunity to investigate the potential role of, previously unaccounted-for, sex-specific patterns such as sexual selection or sex-specific dispersal bias in the evolution of free-spawning benthic species.

6.
bioRxiv ; 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37461691

RESUMO

Genetic elements encoded in nuclear DNA determine the sex of an individual in many animals. In bivalves, however, mitochondrial DNA (mtDNA) has been hypothesized to contribute to sex determination in lineages that possess doubly uniparental inheritance (DUI). In these cases, females transmit a female mtDNA (F mtDNA) to all offspring, while male mtDNA (M mtDNA) is transmitted only from fathers to sons. Because M mtDNA is inherited in the same way as Y chromosomes, it has been hypothesized that mtDNA may be responsible for sex determination. However, the role of mitochondrial and nuclear genes in sex determination has yet to be validated in DUI bivalves. In this study, we used DNA, RNA, and mitochondrial short non-coding RNA (sncRNA) sequencing to explore the role of mitochondrial and nuclear elements in the sexual development pathway of the freshwater mussel Potamilus streckersoni (Bivalvia: Unionida). We found that the M mtDNA shed a sncRNA partially within a male-specific mitochondrial gene that targeted pathways hypothesized to be involved in female development and mitophagy. RNA-seq confirmed the gene target was significantly upregulated in females, supporting a direct role of mitochondrial sncRNAs in gene silencing. These findings support the hypothesis that M mtDNA inhibits female development. Genome-wide patterns of genetic differentiation and heterozygosity did not support a nuclear sex determining region, although we cannot reject that nuclear factors are involved with sex determination. Our results provide further evidence that mitochondrial loci contribute to diverse, non-respiratory functions and provide a first glimpse into an unorthodox sex determining system.

7.
Physiol Biochem Zool ; 96(4): 247-259, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37418607

RESUMO

AbstractParasites can affect host behavior, cognition, locomotion, body condition, and many other physiological traits. Changes to host aerobic metabolism may be responsible for these parasite-induced performance alterations. Whole-organism metabolic rate is underpinned by cellular energy metabolism driven most prominently by mitochondria. However, few studies have explored how mitochondrial enzymatic activity relates to body condition and parasite infection, despite it being a putative site for metabolic disruptions related to health status. We studied correlations among natural parasite infection, host body condition, and activity of key mitochondrial enzymes in target organs from wild-caught pumpkinseed sunfish (Lepomis gibbosus) to better understand the cellular responses of fish hosts to endoparasite infection. Enzymatic activities in the gills, spleen, and brain of infected fish were not significantly related to parasite infection or host body condition. However, the activity of cytochrome c oxidase, an enzyme involved in oxidative phosphorylation, in fish hearts was higher in individuals with a lower body condition. Activities of citrate synthase, electron transport system (complexes I and III), and carnitine palmitoyltransferase were also significantly different among organ types. These results provide preliminary information regarding the likely mitochondrial pathways affecting host body condition, the maintenance energetic requirements of different organs, and the organs' specific dependency on particular mitochondrial pathways. These results help pave the way for future studies on the effects of parasite infection on mitochondrial metabolism.


Assuntos
Perciformes , Animais , Perciformes/metabolismo , Perciformes/parasitologia , Peixes , Mitocôndrias/metabolismo , Metabolismo Energético , Fenótipo
8.
Gene ; 879: 147586, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37356740

RESUMO

There appears to be an additional set of sex-specific mtDNA-encoded proteins in bivalve species with doubly uniparental mitochondrial inheritance that may be involved in the transmission of the female and male mitogenomes. In the marine mussel Mytilus edulis, the translation of the female-specific open reading frame (F-ORF) was demonstrated but the translation of the male-specific ORF (M-ORF) remains to be shown. Here we validate the male-specific ORF of the paternal mitogenome in M. edulis as a protein-coding gene. The M-ORF protein was detected only in male gonads and localized in sperm mitochondria and acrosome, suggesting that it is involved in a key sperm function in Mytilus edulis.


Assuntos
Bivalves , Mytilus edulis , Mytilus , Animais , Masculino , Feminino , DNA Mitocondrial/genética , Mytilus edulis/genética , Sêmen , Mitocôndrias/genética , Bivalves/genética , Genes Mitocondriais , Mytilus/genética
9.
BMC Biol ; 21(1): 111, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37198654

RESUMO

BACKGROUND: Mitochondria have a central role in cellular functions, aging, and in certain diseases. They possess their own genome, a vestige of their bacterial ancestor. Over the course of evolution, most of the genes of the ancestor have been lost or transferred to the nucleus. In humans, the mtDNA is a very small circular molecule with a functional repertoire limited to only 37 genes. Its extremely compact nature with genes arranged one after the other and separated by short non-coding regions suggests that there is little room for evolutionary novelties. This is radically different from bacterial genomes, which are also circular but much larger, and in which we can find genes inside other genes. These sequences, different from the reference coding sequences, are called alternatives open reading frames or altORFs, and they are involved in key biological functions. However, whether altORFs exist in mitochondrial protein-coding genes or elsewhere in the human mitogenome has not been fully addressed. RESULTS: We found a downstream alternative ATG initiation codon in the + 3 reading frame of the human mitochondrial nd4 gene. This newly characterized altORF encodes a 99-amino-acid-long polypeptide, MTALTND4, which is conserved in primates. Our custom antibody, but not the pre-immune serum, was able to immunoprecipitate MTALTND4 from HeLa cell lysates, confirming the existence of an endogenous MTALTND4 peptide. The protein is localized in mitochondria and cytoplasm and is also found in the plasma, and it impacts cell and mitochondrial physiology. CONCLUSIONS: Many human mitochondrial translated ORFs might have so far gone unnoticed. By ignoring mtaltORFs, we have underestimated the coding potential of the mitogenome. Alternative mitochondrial peptides such as MTALTND4 may offer a new framework for the investigation of mitochondrial functions and diseases.


Assuntos
Genoma Mitocondrial , NADH Desidrogenase , Humanos , DNA Mitocondrial/genética , Células HeLa , Mitocôndrias/genética , Fases de Leitura Aberta , Peptídeos , NADH Desidrogenase/genética
10.
Mol Biol Evol ; 40(4)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36929911

RESUMO

Critical mitochondrial functions, including cellular respiration, rely on frequently interacting components expressed from both the mitochondrial and nuclear genomes. The fitness of eukaryotic organisms depends on a tight collaboration between both genomes. In the face of an elevated rate of evolution in mtDNA, current models predict that the maintenance of mitonuclear compatibility relies on compensatory evolution of the nuclear genome. Mitonuclear interactions would therefore exert an influence on evolutionary trajectories. One prediction from this model is that the same nuclear genome evolving with different mitochondrial haplotypes would follow distinct molecular paths toward higher fitness. To test this prediction, we submitted 1,344 populations derived from 7 mitonuclear genotypes of Saccharomyces cerevisiae to >300 generations of experimental evolution in conditions that either select for a mitochondrial function or do not strictly require respiration for survival. Performing high-throughput phenotyping and whole-genome sequencing on independently evolved individuals, we identified numerous examples of gene-level evolutionary convergence among populations with the same mitonuclear background. Phenotypic and genotypic data on strains derived from this evolution experiment identify the nuclear genome and the environment as the main determinants of evolutionary divergence, but also show a modulating role for the mitochondrial genome exerted both directly and via interactions with the two other components. We finally recapitulated a subset of prominent loss-of-function alleles in the ancestral backgrounds and confirmed a generalized pattern of mitonuclear-specific and highly epistatic fitness effects. Together, these results demonstrate how mitonuclear interactions can dictate evolutionary divergence of populations with identical starting nuclear genotypes.


Assuntos
DNA Mitocondrial , Genoma Mitocondrial , DNA Mitocondrial/genética , Mitocôndrias/genética , Eucariotos/genética , Genótipo , Núcleo Celular/genética
11.
Genome Biol Evol ; 14(12)2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36508337

RESUMO

The molecular factors and gene regulation involved in sex determination and gonad differentiation in bivalve molluscs are unknown. It has been suggested that doubly uniparental inheritance (DUI) of mitochondria may be involved in these processes in species such as the ubiquitous and commercially relevant Manila clam, Ruditapes philippinarum. We present the first long-read-based de novo genome assembly of a Manila clam, and a RNA-Seq multi-tissue analysis of 15 females and 15 males. The highly contiguous genome assembly was used as reference to investigate gene expression, alternative splicing, sequence evolution, tissue-specific co-expression networks, and sexual contrasting SNPs. Differential expression (DE) and differential splicing (DS) analyses revealed sex-specific transcriptional regulation in gonads, but not in somatic tissues. Co-expression networks revealed complex gene regulation in gonads, and genes in gonad-associated modules showed high tissue specificity. However, male gonad-associated modules showed contrasting patterns of sequence evolution and tissue specificity. One gene set was related to the structural organization of male gametes and presented slow sequence evolution but high pleiotropy, whereas another gene set was enriched in reproduction-related processes and characterized by fast sequence evolution and tissue specificity. Sexual contrasting SNPs were found in genes overrepresented in mitochondrial-related functions, providing new candidates for investigating the relationship between mitochondria and sex in DUI species. Together, these results increase our understanding of the role of DE, DS, and sequence evolution of sex-specific genes in an understudied taxon. We also provide resourceful genomic data for studies regarding sex diagnosis and breeding in bivalves.


Assuntos
Bivalves , DNA Mitocondrial , Animais , Feminino , Masculino , DNA Mitocondrial/genética , RNA-Seq , Bivalves/genética , Mitocôndrias/genética , Evolução Molecular
12.
Biol Lett ; 18(6): 20220122, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35673874

RESUMO

Cytochrome c oxidase subunit II (COX2) is one of the three mitochondrially encoded proteins of the complex IV of the respiratory chain that catalyses the reduction of oxygen to water. The cox2 gene spans about 690 base pairs in most animal species and produces a protein composed of approximately 230 amino acids. We discovered an extreme departure from this pattern in the male-transmitted mitogenome of the bivalve Scrobicularia plana with doubly uniparental inheritance (DUI) of mitochondrial DNA (mtDNA), which possesses an important in-frame insertion of approximately 4.8 kb in its cox2 gene. This feature-an enlarged male cox2 gene-is found in many species with DUI; the COX2 protein can be up to 420 amino acids long. Through RT-PCRs, immunoassays and comparative genetics, the evolution and functionality of this insertion in S. plana were characterized. The in-frame insertion is conserved among individuals from different populations and bears the signature of purifying selection seemingly indicating maintenance of functionality. Its transcription and translation were confirmed: this gene produces a polypeptide of 1892 amino acids, making it the largest metazoan COX2 protein known to date. We hypothesize that these extreme modifications in the COX2 protein affect the metabolism of mitochondria containing the male-transmitted mtDNA in Scrobicularia plana.


Assuntos
Bivalves , Genoma Mitocondrial , Aminoácidos/genética , Aminoácidos/metabolismo , Animais , Bivalves/genética , Bivalves/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , DNA Mitocondrial/genética , Masculino , Proteínas Mitocondriais/genética
13.
Bioessays ; 44(4): e2100283, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35170770

RESUMO

Animal and plant species exhibit an astonishing diversity of sexual systems, including environmental and genetic determinants of sex, with the latter including genetic material in the mitochondrial genome. In several hermaphroditic plants for example, sex is determined by an interaction between mitochondrial cytoplasmic male sterility (CMS) genes and nuclear restorer genes. Specifically, CMS involves aberrant mitochondrial genes that prevent pollen development and specific nuclear genes that restore it, leading to a mixture of female (male-sterile) and hermaphroditic individuals in the population (gynodioecy). Such a mitochondrial-nuclear sex determination system is thought to be rare outside plants. Here, we present one possible case of CMS in animals. We hypothesize that the only exception to the strict maternal mtDNA inheritance in animals, the doubly uniparental inheritance (DUI) system in bivalves, might have originated as a mitochondrial-nuclear sex-determination system. We document and explore similarities that exist between DUI and CMS, and we propose various ways to test our hypothesis.


Assuntos
DNA Mitocondrial , Genoma Mitocondrial , Animais , DNA Mitocondrial/genética , Feminino , Genes Mitocondriais/genética , Genoma Mitocondrial/genética , Padrões de Herança/genética , Infertilidade das Plantas
14.
Mitochondrial DNA B Resour ; 6(9): 2701-2703, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34435125

RESUMO

Brachiopods are a clade of marine organisms with a tremendously diverse and abundant fossil record but with fewer than 500 species extant today. Even if a better understanding of their biology and genetics could help to test hypotheses about their impressive decline, knowledge of genetics and evolutionary genomics in extant brachiopods is very poor. Here, we present the complete mitochondrial genome sequence of the inarticulate Glottidia pyramidata, an eastern North American extant representative of the phylum Brachiopoda. Besides the general characteristics of the sequenced mitogenome, we present its unusual features such as deviant ATP8 protein sequence and supernumerary ORFs, and also unique gene order, considering the available genome sequences of other brachiopod species.

15.
Genes (Basel) ; 12(8)2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34440385

RESUMO

Doubly uniparental inheritance (DUI) of mitochondrial DNA (mtDNA) in bivalve mollusks is one of the most notable departures from the paradigm of strict maternal inheritance of mtDNA among metazoans. Recently, work on the Mediterranean mussel Mytilus galloprovincialis suggested that a nucleotide motif in the control region of this species, known as the sperm transmission element (STE), helps protect male-transmitted mitochondria from destruction during spermatogenesis. Subsequent studies found similar, yet divergent, STE motifs in other marine mussels. Here, we extend the in silico search for mtDNA signatures resembling known STEs. This search is carried out for the large unassigned regions of 157 complete mitochondrial genomes from within the Mytiloida, Veneroida, Unionoida, and Ostreoida bivalve orders. Based on a sliding window approach, we present evidence that there are additional putative STE signatures in the large unassigned regions of several marine clams and freshwater mussels with DUI. We discuss the implications of this finding for interpreting the origin of doubly uniparental inheritance in ancestral bivalve mollusks, as well as potential future in vitro and in silico studies that could further refine our understanding of the early evolution of this unusual system of mtDNA inheritance.


Assuntos
Bivalves/genética , Genoma Mitocondrial , Espermatozoides/fisiologia , Animais , DNA Mitocondrial/genética , Padrões de Herança , Masculino
16.
J Exp Biol ; 224(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34401903

RESUMO

Frequent heat waves caused by climate change can give rise to physiological stress in many animals, particularly in sessile ectotherms such as bivalves. Most studies characterizing thermal stress in bivalves focus on evaluating the responses to a single stress event. This does not accurately reflect the reality faced by bivalves, which are often subject to intermittent heat waves. Here, we investigated the effect of intermittent heat stress on mitochondrial functions of the eastern oyster, Crassostrea virginica, which play a key role in setting the thermal tolerance of ectotherms. Specifically, we measured changes in mitochondrial oxygen consumption and H2O2 emission rates before, during and after intermittent 7.5°C heat shocks in oysters acclimated to 15 and 22.5°C. Our results showed that oxygen consumption was impaired following the first heat shock at both acclimation temperatures. After the second heat shock, results for oysters acclimated to 15°C indicated a return to normal. However, oysters acclimated to 22.5°C struggled more with the compounding effects of intermittent heat shocks as denoted by an increased contribution of FAD-linked substrates to mitochondrial respiration as well as high levels of H2O2 emission rates. However, both acclimated populations showed signs of potential recovery 10 days after the second heat shock, reflecting a surprising resilience to heat waves by C. virginica. Thus, this study highlights the important role of acclimation in the oyster's capacity to weather intermittent heat shock.


Assuntos
Crassostrea , Animais , Cádmio , Resposta ao Choque Térmico , Peróxido de Hidrogênio , Mitocôndrias
17.
Proc Biol Sci ; 288(1957): 20211585, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34403637

RESUMO

Doubly uniparental inheritance (DUI) represents a notable exception to the general rule of strict maternal inheritance (SMI) of mitochondria in metazoans. This system entails the coexistence of two mitochondrial lineages (F- and M-type) transmitted separately through oocytes and sperm, thence providing an unprecedented opportunity for the mitochondrial genome to evolve adaptively for male functions. In this study, we explored the impact of a sex-specific mitochondrial evolution upon gamete bioenergetics of DUI and SMI bivalve species, comparing the activity of key enzymes of glycolysis, fermentation, fatty acid metabolism, tricarboxylic acid cycle, oxidative phosphorylation and antioxidant metabolism. Our findings suggest reorganized bioenergetic pathways in DUI gametes compared to SMI gametes. This generally results in a decreased enzymatic capacity in DUI sperm with respect to DUI oocytes, a limitation especially prominent at the terminus of the electron transport system. This bioenergetic remodelling fits a reproductive strategy that does not require high energy input and could potentially link with the preservation of the paternally transmitted mitochondrial genome in DUI species. Whether this phenotype may derive from positive or relaxed selection acting on DUI sperm is still uncertain.


Assuntos
Bivalves , Genoma Mitocondrial , Animais , Bivalves/genética , DNA Mitocondrial/genética , Feminino , Masculino , Mitocôndrias/genética , Fosforilação Oxidativa
19.
Genome Biol Evol ; 13(7)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-33892508

RESUMO

How do species respond or adapt to environmental changes? The answer to this depends partly on mitochondrial epigenetics and genetics, new players in promoting adaptation to both short- and long-term environmental changes. In this review, we explore how mitochondrial epigenetics and genetics mechanisms, such as mtDNA methylation, mtDNA-derived noncoding RNAs, micropeptides, mtDNA mutations, and adaptations, can contribute to animal plasticity and adaptation. We also briefly discuss the challenges in assessing mtDNA adaptive evolution. In sum, this review covers new advances in the field of mitochondrial genomics, many of which are still controversial, and discusses processes still somewhat obscure, and some of which are still quite speculative and require further robust experimentation.


Assuntos
Genoma Mitocondrial , Mitocôndrias , Animais , DNA Mitocondrial/genética , Epigênese Genética , Epigenômica , Mitocôndrias/genética
20.
Med Sci (Paris) ; 37(3): 258-264, 2021 Mar.
Artigo em Francês | MEDLINE | ID: mdl-33739273

RESUMO

DNA methylation is an epigenetic mechanism that has been largely probed regarding eukaryotic nuclear genome and bacteria, and its role is especially crucial in the regulation of gene expression. In mammals, it is almost exclusively acting on a cytosine preceding a guanine (CpG), whereas it presents itself mainly in a non-CpG context in bacteria's DNA. Conversely to nuclear and bacterial genomes, the existence of methylation in the mitochondrial genome is still widely debated. This controversy has been attributed to structural differences between the nuclear and mitochondrial genomes, and to the techniques used to study methylation of cytosines, which were rather optimized for the study of nuclear DNA. However, novel studies suggest that cytosine methylation is truly existing in mitochondria, and that it is mostly found in a non-CpG context, just like in their evolutionary relative, the bacteria.


TITLE: Méthylation de l'ADN mitochondrial - Controverses, enjeux et perspectives. ABSTRACT: La méthylation de l'ADN est un mécanisme épigénétique essentiel à la plupart des organismes, notamment pour la régulation de l'expression génique. Dans le génome nucléaire des mammifères, elle est généralement restreinte aux cytosines précédant une guanine, alors qu'elle opère dans un contexte nucléotidique plus varié chez les bactéries. Curieusement, l'existence même de méthylation dans les mitochondries demeure en débat. Cette controverse pourrait être due aux différences entre ces génomes, et à des méthodologies plutôt adaptées à l'étude des méthylations du génome nucléaire. Des études récentes suggèrent ainsi que la méthylation de l'ADN mitochondrial se ferait davantage en contexte nucléotidique varié, comme chez leurs ancêtres bactériens.


Assuntos
Metilação de DNA , DNA Mitocondrial/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...